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Introduction
The PanCancer Immune Profiling Advanced Analysis Module was 
created to help scientists perform statistically-principled analyses 
of their nCounter PanCancer Immune Profiling Panel data. It brings 
together powerful academic open-source analysis tools via a 
simple interface that guides a user through the analysis to create 
an interactive HTML document that displays the analytical results. 
The collection of advanced analysis capabilities that define the 
PanCancer Immune Profiling Advanced Analysis Module includes 
eight modules enabling QC, Normalization, Immune Cell Scoring, CT 
Antigen Expression, Differential Expression (DE), Gene Set Analysis 
(GSA), Pathview Plots, and Select Gene Descriptions (SGD). These 
advanced analyses are performed using R, a powerful statistical 
software program. However, familiarity with R is not required, as 
users only need to interact with a simple wizard within nSolver™ 2.6.

While users of the PanCancer Pathways Advanced Analysis Module 
will find many of the analysis options similar, the PanCancer Immune 
Profiling Advanced Analysis Module includes unique analytical 
methods for expression-based assessment of immune cell type 
activity. Genes defined as being cell type-specific are used to 
calculate cell type scores, and gene set analysis groups genes into 
functional immune-related categories.

Results of an advanced analysis are displayed in two formats:

• A results directory containing the plots and tables created by 
the analysis

• An interactive HTML analysis report.

This white paper describes an example analysis detailing the choices 
available to the user and explaining the potential outcomes of these 
decisions in the results. It is presented in the style of a vignette 
that shows the complete analysis of an actual PanCancer Immune 
Profiling Panel dataset.

Running the nCounter® PanCancer Immune Profiling Panel 
Advanced Analysis
The workflow to operate the PanCancer Immune Profiling 
Advanced Analysis Module is very simple:

1. Import RCC files to nSolver 2.6, perform QC, and create an 
experiment.

2. Select the data to use and select Advanced Analysis.

3. A window will open with options to create and run an R script.

4. The script will run and store all data on a local 
computer(Results are not imported into nSolver, and the 
original dataremains untouched.)

5. The results are displayed in an HTML viewer (e.g., a 
webbrowser).

The nSolver Analysis Software User Manual explains the basics of 
how to install and operate nSolver; this white paper will begin with 
the process of setting up an advanced analysis using the PanCancer 
Immune Profiling Panel Advanced Analysis Module. The analysis 
described below uses the example breast cancer data that is 
available when downloading nSolver and can be used as a training 
tool. These 74 samples are a subset of the 201 files provided with 
the Pan Cancer Immune Profiling panel, and sample names are the 
same to allow cross comparison. However, it should be noted that 
the control samples are different.

Advanced analyses in nSolver 2.6 can only be applied to one of two 
levels of data: raw data or normalized data. An experiment must 
also be created within nSolver to run the advanced analysis. If raw 
data are used, then the PanCancer Immune Profiling Advanced 
Analysis Module can automatically choose optimal normalization 
genes and use them to perform normalization. Performing 
the advanced analysis using normalized data will preserve the 
normalization and/ or background subtraction already performed in 
nSolver.

Using the PanCancer Immune Profiling Advanced Analysis Module for 
Analysis of nCounter® PanCancer Immune Profiling Data

FIGURE 1: Begin an advanced analysis. Select the desired samples from 
the Experiments view, and then select the Advanced Analysis icon.
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Once the advanced analysis wizard opens, choose a name for the 
analysis and select an analysis module. The PanCancer Immune 
Profiling Advanced Analysis Module will only work with files 
generated using the PanCancer Immune Profiling Panel and 
its accompanying Reporter Library File (RLF). Specific analysis 
modules are available for Human and Mouse and offer identical 
functionality with only a few differences in the underlying gene 
and cell type annotations. Data generated by merging a PanCancer 
Immune Profiling Panel RLF with an Add-in Library File (ALF) are 
also compatible with the analysis module. However, the additional 
genes specified in the ALF will be ignored.

Click Next to continue to the sample annotations screen.

Select Sample Annotations
The annotations screen is the first of four screens in which analysis 
parameters are entered.

Any annotations created in nSolver when setting up the experiment 
are available. To import additional annotations in the advanced 
analysis wizard, select Import.

Once all the annotations have been imported, select one variable 
to serve as a unique identifier for every lane. In this case, Sample 
Name has been selected using the checkbox in the first column. 
(The *.RCC file name will always be a valid identifier. However, these 
file names tend to be lengthy.)

Next, select the annotations (covariates) to be used in the analysis. 
Only the covariates selected here will be available in later steps of 
the analysis.

In most experiments, it will be appropriate to include one or more 
biological annotations in the analysis. It can also be useful to 
include technical annotations, either to confirm that they are not 
influencing the results or to account for their effects in the analysis. 
For example, CodeSet lot and hybridization time may be technical 
annotations that deserve consideration.

Three types of annotations – categorical, continuous, and true/ 
false – can be included in the advanced analysis. nSolver attempts 
to provide logical default annotation types. However, review these 
before continuing the analysis. It is also necessary to specify a 
categorical reference for each categorical connotation. These will be 
used for comparison.

Categorical: These are annotations for which the samples exist in a 
number of distinct categories. In this example, Subtype and Tumor 
Grade are categorical. A categorical covariate may contains text or 
numbers but must always have a defined “categorical reference” or 

FIGURE 2: Select the desired advanced analysis. Choose a name for the 
analysis, select an analysis module, and specify a path where the analysis 
files should be saved.

FIGURE 3: Import an annotation set. Select an annotation file and the 
annotations to be imported.

FIGURE 4: Select sample annotations to be included in analysis. 
Select annotations, the data type (categorical or continuous) for each 
annotation, and the references for any categorical annotations.
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baseline. The choice of a reference shapes differential expression 
analysis, which will compare all variations of the categorical 
annotation to the chosen reference.

Continuous: These annotations have values that can be interpreted 
meaningfully as numbers. Binding Density is a good example of a 
continuous variable: if two samples have binding densities of 1.0 and 
1.2, this can be interpreted to mean the second sample has binding 
density 0.2 units greater than the first. However, some numeric 
variables, such as Disease Grade, describe more arbitrary measures. 
Classifying this annotation as “continuous” would be dubious 
because it would imply that the difference between Grade I and 
Grade II disease is the same as the difference between Grade II and 
Grade III, i.e., one “unit” of disease. Numeric variables like Disease 
Grade are thus better modeled as categorical annotations.

True/False: These annotations must take only the values TRUE 
or FALSE. For the purposes of the PanCancer Immune Profiling 
Advanced Analysis Module, such annotations are equivalent to 
categorical annotations with FALSE as the reference level

This example dataset contains results from 74 breast cancer and 
healthy breast tissue samples assayed with the PanCancer Immune 
Profiling Panel. For each cancer sample, the subtype is known and 
was annotated in nSolver as Normal, A, B, C, or D. The biological 
annotation Subtype was selected for the analysis.

Other Annotations Chosen For This Analysis:
• Binding density – Surrogate for amount of RNA actually loaded

•  Subtype – Breast cancer subtype

•  RNA.Conc – Concentration of RNA received, not amount 
loaded, surrogate for difficulty of obtaining good quality RNA

•  Tumor Grade – Tumor grade as classified at surgery

•  Age at excision – Used to check age-related effects

•  BMI – Body Mass Index

For purposes of this analysis, some of these annotations will be used 
for QC, while the three main annotations used for experimental 
analysis (to determine their effects on immune profiling) will be 
Subtype, Tumor Grade, and BMI.

Click Next to continue to the gene annotations screen.

Select gene annotation information to be used during the advanced 
analysis. Such information may include definitions of gene sets 
(i.e., groups of genes to be analyzed, such as those that represent 
expanded T-cell functions) or cell types (i.e., genes that identify 
a specific cell type population, such as a specific immune cell 
classification). Be aware that full utilization of cell type information 
may require generating an additional cell contrasts file (.csv format).

To add new gene annotations to the advanced analysis wizard, 
click Import and follow the same instructions previously provided 
to import new sample annotations (see previous page; for small 
changes to the gene annotations already used by the PanCancer 
Immune Profiling Advanced Analysis Module, it may be easier to 
modify the gene annotations file provided in the Sample Data 
directory with the nSolver download). After modifying the file, 
import it and select the new gene annotations fields that are 
desired.

The default gene annotations are provided in TABLE 1. No selections 
need to be made on the gene annotations page if these defaults 
will be used. Click Next when ready to continue to the normalization 
options.

FIGURE 5: Select gene annotations to be used as covariate in analysis.

 Annotation Description Use
 Cell.Type Identifies genes previously reported 

to have cell type-specific expression 
(Bindea et al., 2013)

Can be used as cell type but requires 
new cell contrasts file

 Cell.type.tcga Identifies a subject of the Cell.Type 
genes whose cell type secifically has 
been further confirmed in analyses 
of TCGA data. Only higher 
confidence cell types are reported, 
so some cell types seen in the 
Cell.Type annotation are not 
annotated in this set.

Default cell type definition

 Immune.response Defines if a gene is seen in Adaptive, 
Innate, Humoral, or Inflammation 
response. (A gene can be in multiple 
categories.)

Can be used as gene set

 Immune.response.category Defines sets of genes that are 
involved in various functions 
groupings, e.g., cell cycle, Adhesion, 
cytokines. (A gene can be in multiple 
categories.)

Default gene set

TABLE 1: Default gene set annotations.
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Normalization Options
The PanCancer Immune Profiling Panel has 40 candidate 
normalization genes (“housekeeping genes”) that were selected 
based on their stability in TCGA gene expression data from multiple 
cancer types. However, the stability of any of given gene will vary 
between datasets because not all potential housekeeping genes 
are stably expressed in all cancer types or when exposed to a given 
treatment. Optimal analysis requires normalization using only the 
most stable subset of these genes.

The normalization module uses the popular geNorm algorithm 
(Vandescompele et al., 2002) to identify an optimal subset of 
housekeeping genes. While expression of a good housekeeping 
gene may vary between samples in non-normalized data, the ratio 
between two good housekeepers should be very stable. geNorm 
relies on this theory to iteratively remove candidate housekeepers 
with the least stable expression relative to other candidates. Users 
may also specify a desired number of housekeeping genes.

Note that the PanCancer Immune Profiling Advanced Analysis 
Module cannot automatically detect whether normalized or raw 
data are used, so be sure to select appropriate normalization 
options during the advanced analysis. Normalization performed 
using the PanCancer Immune Profiling Advanced Analysis Module 
will override any previously performed normalization.

Use this screen to select the desired normalization and gene sets to 
use in the analysis.

If the advanced analysis was initiated using normalized data, then 
unselect the option to Dynamically Choose Housekeepers. If the 
option to Dynamically Choose Housekeepers is selected, then the 
advanced analysis module will normalize the data (see additional 
detail below).

Run QC and Descriptive Analyses – The QC module generates high 
level analyses by covariate and cell type. It is recommended to 
always run this the first time a data set is analyzed, as it enables a 
review of the experimental design

Threshold Low Count Data – It is possible that some genes may 
not be expressed in some or all samples because the PanCancer 
Immune Profiling Panel is designed to work with a wide variety of 
sample types. Setting the threshold for low count data helps to 
avoid spurious conclusions based on analysis of background rather 
than signal by removing genes that fall below a given low count 
level more than a set percentage of the time. Take care when setting 
this threshold..

For example, if there are three treatments and the threshold is set 
to 25% of samples, genes that were silenced by one treatment (i.e., 
genes that were expressed in two groups but not in the third) could 
be eliminated despite their biological significance. If the effect of 
this filter is a concern, you can run the analysis with and without 
filtering. Conclusions that are robust to the choice of data cleaning 
method are more likely to be reproducible. Note that low count 
thresholds will only remove genes from differential expression and 
associated analyses such as GSA and Pathview.

Choose Additional Image Types – The PanCancer Immune Profiling 
Advanced Analysis Module creates *.png images of all plots and 
inserts them into the final interactive report. If another plot type is 
chosen, duplicates of all *.png images will be made in the desired 
format. These images can be found in the analysis results directory 
specified on the first page of the Advanced Analysis Wizard.

Annotation Defining Gene Sets – Indicate the gene annotation 
information that will be used for gene set analysis. Only the default 
and any sets chosen on the previous screen will be available for 

FIGURE 6: Normalization parameters and other options. FIGURE 7: Select Cell Type Profiling Options. Select covariates to use in 
analysis as well as cell-type definitions and analysis options
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selection. (The ability to define your own gene sets is a powerful 
function, as you can divide the genes in the panel into any grouping 
that you desire, providing a very effective means to explore your 
data.)

Click Next to continue to the Cell Type Profiling Options screen

Cell Type Profiling Options
Select the parameters to perform analysis of immune cell 
population abundance. If only gene sets will be analyzed, disable 
this option. This analysis requires at least one covariate to be 
selected.

Previous authors (Bindea, 2013; Newman et al., 2015) have identified 
genes whose expression is largely specific to certain immune cell 
populations. The PanCancer Immune Profiling Advanced Analysis 
Module uses these genes to measure the abundance of these cell 
types. It assumes that each cell type’s characteristic genes are 
expressed exclusively and consistently within the cell type. Under 
this model, a cell type’s abundance can be measured as the average 
log-scale expression of its characteristic genes.

The cell type profiling module tests the assumption that each cell 
type’s characteristic genes follow the above model, and it can 
discard genes with discordant expression patterns.

Column Specifying the Immune Cell Types Characteristic Genes 
Select either the default cell type set (cell.type.tcga) or a custom 
type (as selected on the gene annotation screen) to be used for 
specifying the cell type characteristic genes. If you choose a custom 
annotation column, a window will appear warning that a custom 
cell type contrasts file (.CSV format) will be needed. Contrasts are 
the average log expression value for the specified gene sets (in 
this case, cell types) in the form of gene set 1 / gene set 2. They 
will only be displayed if a “cell type profile” is generated for both 
the numerator and the denominator. The specified gene sets in the 
.csv must also match those provided in the column specifying the 
immune cell type characteristic genes.

Creating Signatures The module’s cell type abundance 
measurements assume that if a cell population doubles, then the 
counts of its characteristic genes should also double. As a result, the 
genes used to define a cell type should be highly correlated with 
a slope close to 1. The default setting enables omission of genes 
inconsistent with this pattern. The “Use all genes” setting bypasses 
this QC step and retain all genes. This option is useful in cases 
where the user has a high degree of confidence in the gene list or 
the sample size is too small to adequately evaluate the genes. If the 
automatic gene selection returns unsatisfactory results, ad hoc gene 
lists can always be created by modifying the gene annotation file.

P-value Threshold For Reporting Defines the significance threshold 
for reporting a cell type abundance estimate. Cell types whose 
evidence for cell type-specific expression does not meet this level of 
confidence will be discarded. By default, this value is set to display 
all, returning results for all cell types regardless of how well their 
genes exhibit cell type-specific expression in your data. Choose a 
value of 0.05 or lower to see results for only those cell types whose 
quantification is further supported by your data. The default is to 
display all, rather than filtering by p-value, because gene sets with 
high p-values may still be useful: even if your dataset does not 
provide high confidence values, the results of previous authors 
provide enough evidence to make their use a reasonable choice.

Show Results For allows choices in how results are displayed

• Raw cell type abundance shows the estimated abundances of 
each individual cell type. Abundance estimates are given on the 
log2 scale, so a unit increase in score corresponds to a doubling 
of a cell type’s abundance. As each abundance estimate is 
simply the average of a cell type’s characteristic genes, these 
estimates do not support claims about whether one cell type is 
more abundant than another. Rather, they permit claims that a 
cell type is more abundant in one sample than in another. 

• Relative cell type abundances show contrasts between pairs 
of cell types. For example, rather than measuring CD8 T-cell 
abundance, a relative cell type score measures CD8 abundance 
relative to overall T-cell abundance. Relative abundance 
measurements are especially useful in samples comprised 
purely of blood cells.

Click Next to continue to the differential expression options screen.

Differential Expression (DE) Options
The PanCancer Immune Profiling Advanced Analysis Module 
uses linear regression to investigate differential gene expression 
in response to multiple covariates simultaneously. This approach 
isolates the independent effect of each covariate on gene 
expression and avoids confounding due to technical variables. For 
example, when variables are confounded, this approach supports 
statements such as, “case vs. control status is associated with a 
2-fold increase in BCL2 expression, holding age and sex constant.”

To perform DE analysis, select at least one variable as a predictor. 
Additional variables may be selected as confounders. The linear 
regressions treat predictors and confounders identically, but results 
are only reported for predictors.

Three covariates are included in this example analysis: Subtype, 
Tumor Grade, and BMI. In this case, we have specified on the 
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Annotations page of the wizard that Subtype is a categorical 
variable with five levels and “Normal” designated as the reference 
level. The linear regression will fit a separate term modeling the 
difference of each of the four remaining subtypes from Normal 
samples.

A linear regression will be run for each gene using the following 
model:

E log2(expression) = ß0 + ß1(Subtype A) + ß2(Subtype B) + 
ß3(Subtype C) + ß4(Subtype D) + ß5(Binding Density)

where “SubtypeA”, “SubtypeB”, “SubtypeC”, and “SubtypeD” 
are variables taking the values 0 or 1 depending on each sample’s 
subtype, and each ßn is a constant to be estimated by the linear 
regression.

Although it is tempting to include all available variables in a 
differential expression analysis, parsimonious models with fewer 
variables are generally preferable. Because linear regression 
becomes weak when the ratio of variables to samples grows too 
high, including too many covariates in a model can diminish its 
ability to detect the effects of the variable you care most about. For 
example, including a categorical variable with 10 levels effectively 
adds 9 variables to the model.

A similar problem arises when multiple categorical variables with 
redundant levels are entered into the analysis. For example, a 
variable “cancer vs. normal” and a variable “subtype” could be 
simultaneously entered. Because every normal sample has the 
normal subtype, knowing the value of the “subtype” variable tells 
you the value of the “cancer vs. normal” variable. Linear regression 
cannot accommodate redundant variables, and their presence may 

FIGURE 8: Set Differential Expression options. 
Select Annotations to use in Differential Expression analysis, choose 
whether to Plot results on pathways

FIGURE 9: Specify parameters for Select Gene Descriptive Analysis (SGD). 
Define genes for SGD (1 – 15 genes), select covariates for analysis and set 
parameters for trend plots

cause DE analyses to drop variables unexpectedly or fail entirely.

In short, multivariate DE analyses require a thoughtful setup. To 
perform DE testing for many variables, it is recommended to re-run 
the PanCancer Immune Profiling module with a number of different, 
small DE models.

The large number of genes in the CodeSet makes the use of raw 
p-values problematic: when 730 genes are tested for association 
with a covariate, 36.5 genes are expected to have p < 0.05 by 
chance alone. The differential expression module provides two 
methods for adjusting p-values: The Benjamini-Yekutieli false 
discovery rate (FDR) and the Bonferroni correction. FDR is the 
proportion of genes with equal or greater evidence for differential 
expression that are expected to be “false discoveries” due to 
chance. For example, if a gene has p = 0.02 and FDR = 0.25, then 
25% of the genes with p ≤ 0.02 are expected to be false discoveries. 
The Benjamini-Yekutieli method returns conservative estimates of 
FDR. The Bonferroni correction is a more conservative approach to 
multiple testing: it multiplies each p-value by the number of genes 
tested. Although genes with low Bonferroni-corrected p-values 
have very strong evidence for differential expression, many genes 
worth consideration may be ruled out by this method.

Once a differential expression analysis has been set up, the 
PanCancer Immune Profiling Advanced Analysis Module provides 
methods for examining its results from a gene set perspective rather 
than the level of an individual gene. Select the Run GSA button to 
calculate global significance scores summarizing the overall level of 
statistical significance of each covariate in each Gene set.

Finally, the option to Display Results Using Pathview will overlay 
the differential expression results on KEGG pathway graphs using 



FIGURE 10: Entering gene names for SGD. Interactive gene name 
checking ensures that only genes present (and not defined as reference 
genes) are entered

FIGURE 11: Click the Analysis Data button in the Navigation menu to 
access the analysis results.

FIGURE 12: (a) An overview of four key areas used to navigate the analysis 
results (b) an example of submenus within the secondary navigation 
menu when viewing PCA plots (highlighted as area 2).
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the Pathview R package (Luo et al., 2013). Pathview colors nodes 
according to the differential expression of their genes, measured 
either by fold change, ignoring statistical significance, or by 
t-statistics, which reflect statistical significance and correspond 
imperfectly to fold change. For both coloring schemes, a p-value 
threshold can be selected so that genes above this threshold 
will have their log fold change and t-statistics set to zero before 
Pathview is run. Additional KEGG pathway IDs can be entered as 
5-digit numbers. Note that Pathview requires an Internet connection 
to run.

Click Next to continue to the Select Gene Descriptive Analyses 
screen.

The Select Gene Descriptive module outputs descriptive plots for 
up to 15 user-selected genes relative to the covariates specified. 
This screen enables detailed metrics to be calculated for a smaller 
subset of genes. At least 5 genes need to be entered for Principal 
Components to be calculated (other analyses may be performed 
for less than 5 genes). The genes are entered in the gene name 
box and a pop up display will display potential choices. Select the 
appropriate gene and use the > to move it to the selected box. Note 
that results will not be returned for genes used as normalizers.

Grouping variables Selecting a grouping variable allows for the 
examination association of a variable of interest (e.g., subtype) 
with expression levels of the genes in the ‘Gene List’. At least one 
grouping variable must be selected. For instance, if ‘Subtype’ is 
selected as the grouping variable, subsequent plots and statistics 
for the genes defined in the ‘Gene List’ will be displayed for each of 
the 5 subtypes.

Generate Trend Plots
Trend plots facilitate comparison of expression trends among 
user-defined units of observations (specified here by ‘Series ID’). To 
generate these plots, two parameters must be specified: ‘Interval 
ID’ and ‘Series ID’.

Interval ID is the variable that defines how the data points are 
ordered along the trend (horizontal axis in plots). In this case, we 
have chosen BMI, so we are looking to see if there is any trend with 
increase in BMI. Other typical covariates that would be specified as 
Interval IDs are Time, Concentration, and Dosage.

Series ID defines the groups into which we wish to separate the 
samples; in this case, we have chosen subtype, so the four different 
subtypes (and controls) will each have a separate trend line shown. 
In general, the definition of group could extend to the case where 
each group consists of only one observed entity (in this case, one 
patient).
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Optionally, a stratifying variable can be added; this will further 
subdivide the trends into groups based on the categories chosen. If 
Tumor Grade had been chosen here, a trend line for each subtype 
vs BMI would have been generated for each grade of tumor. (This 
was not selected because there is not enough data to slice into such 
small trends).

Click Finish to start the analysis. Analysis will likely require between 
2 and 15 minutes depending on the number of samples and the 
number of covariates. To monitor progress in the experiment view, 
select the analysis data, then highlight Analysis name and click 
on analysis data. The default HTML viewer will open with a real 
time report on analysis step. Once analysis is complete this will be 
replaced by the HTML data report. All graphic files are stored in the 
location specified on the first page of the wizard.

View the Analysis Results
When completed, results of the analysis can be viewed by selecting 
the appropriate data from the Experiments view and then selecting 
the Analysis Data icon.

This will open an HTML document. On most computers, HTML files 
will open in the default web browser. The analysis is a navigable 
document with multiple layers of information.

1. The first menu selects the analysis module. The available 
results depend on which analyses were run and the structure of 
the data used.

2. The second menu links to different results within an analysis 
module. These choices will often have submenus for selecting 
individual covariates. 

3. The third menu selects a gene set or cell type to focus on 
within a module. 

4. For each plot, a button is provided that, if selected, provides 
details on the plots meaning and methodology.

It is important to note that all the images and data tables used to 
generate images are located in the directory specified when setting 
up the analysis (FIGURE 2).

When setting up this example analysis, we did so with the goal to 
answer a number of questions:

1. Are there any issues with the experimental design?

2.  What gene expression changes are associated with the 
biological annotations – Subtype, Tumor Grade, and BMI? The 
first step is to review the data.

Data Exploration and QC Module
The PanCancer Immune Profiling Advanced Analysis Module creates 
numerous plots that allow you to explore the structure of the data. 
NanoString recommends examining these plots before viewing 
the main analysis results because they give context to other results 
which may even provide evidence for a user to make changes to the 
analysis set up before moving forward.

Before looking at any gene expression data, it is useful to examine 
the basic details of the study design. The PanCancer Immune 
Profiling Advanced Analysis Module draws plots examining the 
relationships between all covariates included in the analysis. All 
selected covariates will be assessed by the QC module, regardless 
of whether they are included in other analyses like differential 
expression (DE) and SGD.

FIGURE 13A: Heatmap and correlation matrix presented in the Summary 
tab in the QC module. Orange cells indicate higher than average 
expression; blue cells indicate lower than average expression. In the 
correlation matrix heatmap, red indicates positive correlation, blue 
indicates negative correlation, and grey indicates no correlation.

FIGURE 13B: Heatmap of the genes where DE analysis found to be 
associated with Subtype with an FDR below 10%.
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The QC module provides four methods for summarizing the 
data:
1. HeatMap: If Summary is selected, the heatmap of normalized 

data is displayed. It is scaled to give all genes equal variance, 
and unsupervised clustering is used to generate dendograms. 
This plot is meant to provide a high level view of the data. To 
see any figure at full size, click it. Colored bars indicate the 
value of each sample for each covariate. Each row is a single 
gene, and each column is a single sample. Sample names may 
be illegible in large datasets, in which case nSolver’s interactive 
heatmap functionality (which can be found under the Analysis 
icon) can zoom in and out.

2. Principal Component Analysis (PCA): In this section, the first 
four principal components of the current gene set’s data are 
plotted against other. FIGURE 14 is color-coded with respect 
to the covariate Subtype. The powerful effect of tumor vs. 
normal is evident in the first two principal components of the 
data, which together capture 35% of the variability in the data. 
While the normal samples clearly cluster apart from the tumor 
samples, the cancer subtypes overlap a great deal, indicating 
that the immune response within these cancer samples is 
not highly correlated to subtype. Tumor grade shows a very 
similar plot, while the other covariates show little evidence 
for clustering. Samples that are outliers in any of the first four 
principal components of the data are indicated to the user 
in a file named “outliers in first 4 principal components.csv” 
and saved in the QC folder of the analysis results directory. 
Outliers may be biologically interesting or caused by technical 
artifacts like failed reactions. Samples that were defined as 
outliers by the PanCancer Immune Profiling Advanced Analysis 
Module and initially flagged by nSolver for any reason should 
be treated with caution. Confirm that any important analysis 
results hold, even when these samples are removed.

3. Study Design: Perhaps the most important part of QC, this tab 
allows you to look at all the covariates and their relationships. 
A series of graphs, histograms and box plots will be presented 
dependent on the covariates selected. You can compare some 
of the technical covariates (e.g., binding density) to biological 
annotations (e.g., subtype). If we look at a few of these graphs, 
we can draw a number of conclusions. The histogram for 
distribution of BMI metrics (FIGURE 15) show that there are 
very few values at the high end of the range, suggesting that 
this experiment provides low power to examine DE associated 
with BMI. Another technical value that is of interest is the RNA 
concentration (RNA.CONC). This is not the RNA that was 
loaded (that quantity is captured by binding density) but the 
RNA extraction efficiency If we look at the two graphs that 
compare RNA.CONC to tumor grade and subtype we see a 

FIGURE 10: Entering gene names for SGD. Interactive gene name 
checking ensures that only genes present (and not defined as reference 
genes) are entered

FIGURE 14: Principal component analysis colored by Subtype. The first 
two principal components explain 21% and 14% of variance respectively. 
Note how the first two principal components clearly separate the normal 
from the tumor samples.

FIGURE 15: Distribution of BMI scores

FIGURE 16: Plot of RNA.CONC vs Tumor Grade, clearly showing a 
correlation between grade and amount of RNA extracted (possibly due to 
larger samples available with higher grade tumors), and also for Subtype. 
Analysis of the binding density graphs shows no correlations. Binding 
density represents the amount of RNA loaded on the cartridge.
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definite difference in RNA.CONC for different tumor grades 
and subtypes. This raises the issue of whether we are going to 
see spurious effects of tumor grade and subtype because of 
confounding with extraction efficiency. Experience suggests 
that this effect would only carry through the analysis via an 
effect on binding density, and as can be seen, there is no 
correlation between RNA.CONC and binding density.

4. Other QC: The final QC Tab, “Other QC”, shows two graphs. 
FIGURE 17 shows histograms of p-values for the univariate 
associations between all genes and each covariate. The 
null hypothesis is that there is no difference in expression 
levels between different values of the covariate. Covariates 
with no association with gene expression display mostly 
flat histograms, and covariates with widespread effects on 
gene expression have peaks near zero. If the sample size is 
large enough, technical covariates with such left-weighted 
histograms should be adjusted in the DE analysis so as to avoid 
confounding, especially if they are correlated with a biological 
variable of interest. In the six covariates analyzed here, only 
tumor grade and subtype have really strong associations with 
gene expression. The left-weighted histogram for binding 
density is probably caused by the fact that extremely low 
expressed genes may be close to background when a lower 
amount of RNA was loaded.

The final QC plot, FIGURE 18, shows the mean and variance on the 

log2 scale of each gene in the normalized data. It confirms that the 
selected housekeeping genes are stable and shows the genes with 
the greatest variability, which will often be the most interesting 
genes for further study.

Normalization Module
The PanCancer Immune Profiling Advanced Analysis Module 
displays two plots detailing the performance of the selection 
of normalization genes. FIGURE 19A shows the results of the 
geNorm algorithm applied to the example dataset. The horizontal 
axis shows the order in which candidate genes were removed 
from consideration, and the vertical axis shows a measure of 
internal consistency among the remaining candidate genes. Black 
points indicate the selected subset of housekeeper genes. The 
algorithm removed only 12 genes before attaining optimal pairwise 
agreement. Looking back to FIGURE 18, the non-selected candidate 
housekeepers had significantly higher variance than the others. The 
list of selected housekeepers can be seen by selecting the link “view 
selected HK genes.”

The effects on the data of normalizing to the chosen housekeepers 
are displayed in FIGURE 19B. Histograms of average log 
gene expression of each sample are drawn from the pre- and 
postnormalization data. The lower graph displays a tighter 
histogram of the normalized data, indicating that normalization has 
successfully reduced variability in total gene expression.

FIGURE 17: P-values for the different covariates. The null hypothesis is 
that there is no correlation between the covariate and gene expression. 
Age at excision is a good example of a covariate with minimal association 
with gene expression, while subtype shows extensive association with 
gene expression.

FIGURE 18: Structure of the data, per gene mean expression plotted 
versus variance. Reference genes are highlighted, including those 
rejected. Note the higher variance in those genes. Highly variant genes are 
annotated with the gene name.
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If a desired subset of housekeeper genes has already been 
identified, the normalization should be carried out in nSolver 
using the desired housekeepers before running the PanCancer 
Immune Profiling Advanced Analysis Module. Running the analysis 
on nSolver’s normalized data and selecting the No Normalization 
option (uncheck “Dynamically Choose Housekeepers”) will preserve 
the normalization performed using these genes.

Differential Expression (DE) Module
Results from the DE analysis are presented separately for each 
predictor as a table providing: 

• The estimated log fold-change in expression of each gene 
associated with that predictor

• A 95% confidence interval for that estimate

• The p-value associated with the fold-change

• An adjusted p-value derived using either the Bonferroni 
correction or FDR calculated using the Benjamini-Hochberg or 
Benjamin-Yekutieli methods.

• A list of the gene sets to which the gene belongs

The analysis report will show results for the genes with the lowest 
p-values, and a table of full results is written as a *.csv file in the 
results directory. It is important to realize that the DE module 
analyzes all chosen covariates jointly; therefore each covariate’s 
results give its association with gene expression independent of the 
other covariates, or holding all other covariates constant. TABLE 
2 shows the results from two genes in the comparison of Subtype 
A vs. Normal. The log fold change column gives the estimated 
differences in gene expression (measured on the log2 scale) 
between Subtype A samples and samples in the reference category, 
Normal. To convert these numbers into a fold change in linear space, 
raise 2 to the power of the log fold-change (e.g., 2-4.73= 0.037, so 
CXCL2 is estimated to be 26-fold lower in Subtype A samples than 
in Normal samples.

Similarly, 21.34= 2.53, so LCK is 2.5x higher in Subtype A samples. 
Log fold change values have a slightly different interpretation for 
continuous variables. If TABLE 2 gave the results for BMI, one could 
conclude, “A unit increase in BMI is associated with a 2.5x increase 
in log2 expression of LCK, holding Subtype and Tumor grade 
constant”. Thus for continuous variables, the fold change must be 
read in the context of the range of the variable. Binding density 
has a small range (between 1 and 2 units), so a unit increase is a 
huge difference, and large log fold changes are to be expected. In 
contrast, if we studied the covariate “drug dose in milligrams,” we 

would expect very small estimated log fold changes, not because 
the drug has a small effect but because 1 mg of the drug has a small 
effect.

The results for LCK are correctly interpreted as follows: “Subtype A 
is associated with a 1.34 increase in log2 expression of LCK relative 
to normal samples, holding the value of BMI and tumor grade 
constant. The data are consistent with a true increase between 
0.428 and 2.24. This association is statistically significant, with p = 
0.005, although 12% of genes with similarly strong evidence will be 
false discoveries.”

DE analyses are often summarized using “volcano plots” in which 
the -log10 p-value of each gene is plotted against its log fold 
change. The genes of greatest interest will be both high in the graph 
(corresponding to a very small p-value) and at either the right or left 
side (corresponding to greatly increased or decreased expression).

The PanCancer Immune Profiling Advanced Analysis Modules draws 
a volcano plot for each variable in the regression analysis. FIGURE 
20 shows example results for the comparison of Subtype A vs. 
Normal. Highly statistically significant genes are denoted by color, 
and the 40 most significant genes are named. One of the most 

FIGURE 19: Normalization results. (a) shows a measure of consistency 
among selected housekeeping genes as the geNorm algorithm iteratively 
removes the least consistent housekeepers. (b) Histograms show the 
distribution of average log counts before and after normalization.

Log2 fold 
change

Lower 
confidence 
limit

Upper 
confidence 
limit

P-value FDR Gene. Sets

CXCL2 -4.73 -5.66 -3.81 6.72E-15 2.70E-11
Chemokines, 
Regulation

LCK 1.34 0.428 2.24 0.00527 0.127
Regulation, 
T-Cell 
Functions

TABLE 2: Results for two genes’ differential expression in subtype A vs. 
Normal samples



13  |  Using the PanCancer Immune Profiling Advanced Analysis Module  FEB RUARY 2019

impressive genes determined by both p-value and DE is CXCL2, 
which encodes a cytokine (C-X-C motif chemokine 2) secreted 
by activated monocytes and neutrophils. CXCL2 has a p-value 
of 6•10-15, and is downregulated by roughly 26-fold relative to its 
expression in normal samples. Similarly, TREM1 is highly statistically 
significantly upregulated in subtype A samples. Because CXCL2 
is down regulated, but TREM1 is unregulated, they are located on 
opposite sides of the volcano plot.

As discussed earlier, linear regression cannot accommodate 
redundant variables, and their presence may cause DE analyses 
to drop variables unexpectedly or fail entirely. This can be seen 
in FIGURE 21 on the Tumor Grade pull down menu where there 
is no entry for Tumor Grade III. If this is taken in context with the 
highlighted warning message, it is clear that the covariate (Grade 
III) was dropped from the analysis because it was collinear with one 
of the other covariates. The linear regression cannot handle this 
redundancy, and so it drops the offending variable automatically. 
The solution to this would be to run the analysis with fewer 
covariates. To perform DE testing for many variables without a 
very large sample size, it is recommended to re-run the PanCancer 
Immune Profiling module with a number of different, small DE 
models.

Gene Set Analysis Module
DE results at the individual gene level are important, but 
interpreting results from 730 genes is difficult. It is useful to first 
examine DE at the gene set level to gain a sense of which biological 
processes have the most profound and pervasive DE.

The PanCancer Immune Profiling Advanced Analysis Module 
summarizes DE at the gene set level using two statistics: the 
“global significance statistic” and the “directed global significance 
statistic.” Global significance scores condense the DE results from 
730 genes into gene set level measurements of DE. These simple 
statistics are well-suited to PanCancer Immune Profiling panel data 
and serve as alternatives to gene set analysis methods designed 
for microarray data such as GSEA (Subramanian et al., 2005). They 
are calculated from the t-statistics of gene set genes, which are 
calculated from linear regressions run in the DE analysis. Global 
Significance Statistics are calculated separately for each variable in 
the regression.

The global significance statistic measures the cumulative evidence 
for the DE of genes in a gene set. For each covariate, it is calculated 
as the square root of the pathway’s average squared t-statistic:

where ti is the t-statistic from the ith pathway gene.

FIGURE 20: Volcano plot showing fold change vs. log10 
p-value for Subtype A samples (using Normal samples 
as the baseline). False Discovery Rate cutoffs are shown, 
and the most highly differentially expressed genes are 
named.

FIGURE 21: Demonstrating the challenge of collinear covariates, Tumor Grade III 
data has been omitted due to redundancy with another variable.



FIGURE 22: Global significance statistics and directed global significance 
statistics plotted for each subtype in each cell type. High global 
significance statistics indicate extensive DE. Very high or low directed 
global significance statistics indicate extensive up- or down-regulation, 
respectively.

FIGURE 23: Volcano plot, showing fold change vs -log10 p-value, 
including False Discovery Rate, for Subtype A samples (using Normal 
samples as the baseline).

FIGURE 25: Pathview plot of DE between Subtype B and Normal samples 
in the T-cell receptor Signaling pathway. Green nodes indicate down-
regulated genes, red nodes indicate up-regulated genes, and gray nodes 
do not meet the p-value threshold for coloring. Nodes in white are not 
represented in the PanCancer Immune Profiling Panel.
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The directed global significance statistic is similar in spirit to the 
global significance statistic, but rather than measuring the tendency 
of a pathway to have differentially expressed genes, it measures 
the tendency to have over- or under-expressed genes. For each 
covariate, it is calculated as the square root of the average signed 
squared t-statistic:

and where sign(U) is -1 if U is negative or 1 if U is positive.

A gene set with both highly up-regulated and highly down-
regulated genes can have a very high global significance statistic 
but a directed global significance statistic that is relatively close 
to zero. The two statistics will be equal in a pathway with only up-
regulated or only down-regulated genes. 

FIGURE 22 shows heat maps of the global and directed global 
significance statistics. The heatmap of global significance scores 
on the left shows that with the exception of the NK cell functions 
all the tumor subtypes (compared to normal) are associated with 
greater changes in expression than tumor grade and BMI are. The 
heat map of directed global significance scores on the right shows 
most immune function gene sets have increased expression in 
all subtypes vs. normal, although Chemokines and Transported 
Function genes are downregulated vs. normal in all subtypes. In 
contrast, tumor stage and BMI have relatively weak associations 
with expression in all gene sets. 

For each gene set, the volcano plot from the DE analysis is 
redrawn with the genes from that gene set highlighted (FIGURE 
23). This volcano plot shows the complete picture of chemokine 
DE in the Subtype B vs Normal comparison, with a tendency for 
downregulation but nonetheless a large set of up-regulated genes.

Pathview Plots Module
FIGURE 24 illustrates a Pathview plot of DE between Subtype B and 
Normal samples in the T-Cell receptors gene set for this example 
dataset. Each node represents a protein family and may correspond 
to multiple genes, in which case the node is colored by the average 
fold-changes or t-statistics of its genes. Some biological results will 
be expected, while biologically unexpected results may indicate 
breakdowns in signaling pathways. However, careful interpretation is 
required: a relationship between proteins displayed in a KEGG graph 
may not apply at the level of their mRNA transcripts.

Immune Cell Profiling Module
It is extremely important to understand what the immune cell 
profiling results represent. For each cell a set of genes are assumed 
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to be specific to that cell type. These genes and cell types are 
shown in TABLE 5. The cell types and genes can be defined by the 
user (using custom definition files) or the default set, “Cell.Type.
TCGA”, can be used.

The underlying assumption is that these genes are expressed only in 
that cell type and are expressed at the same level in each cell (these 
are essentially reference genes specific to individual cell types.) 
This assumption allows us to measure a cell type’s abundance 
simply by taking the average log2 expression of its characteristic 
genes. We can test a cell type’s adherence to this assumption by 
looking at its genes’ co-expression pattern. For example, under our 
assumption, if the number of T-cells doubled, the individual counts 
of each T-cell gene would also double, but the ratios between them 
would stay the same. Thus, in samples with varying amounts of 
T-cells, we expect to see high correlation between T-cell genes and 
slopes close to 1. This can be seen in FIGURE 25, where we see the 
genes for T-cells plotted against each other (CD3G, CD96, SH2D1A, 
CD6, CD3, LCK, CD2, and CD3E), and there is a very high degree of 
correlation. A p-value at the top of the plot tests the null hypothesis 
that this pattern of high correlations and slopes near 1 would be 
seen in a random set of genes. The very low p-value indicates the 
data are highly consistent with the assumptions of T-cell specificity 
and consistent expression within T-cells. (Because a permutation 
test is used, p-values exactly equal to zero are possible.) Details of 
this permutation test are given in the Appendix.

FIGURE 25: QC graph for T-cells. Note the highly 
correlated expression with slope close to 1 among 
the T-cell genes. The pattern suggests this set of 
genes measures T-cell abundance well. (This is a 
near-ideal case.)

TABLE 3: The different ways that cell profiles can be used.

If the default setting for creating signatures (“Dynamically Select a 
Subset”) was selected, then the algorithm will drop any genes that 
do not have a high correlation and stable ratios. The algorithm for 
identifying discordant cell type genes is given in the Appendix. This 
automated correction can be seen in FIGURE 26 where for B-cells 
the gene BLK has been discarded. The p-value for the remaining 
B-cell genes is p=0.01.

All of these graphs are available under the QC tab within Immune 
Cell Profiling and should be reviewed before examining the main 
cell type results. Cell types with high p-values and noisy genes 
may still produce useful measurements, but they will deserve more 
skepticism than cell types with plots similar to FIGURE 25. 

Once the cell type QC plots have been reviewed, it is now possible 
to look at the cell type abundance measurements. It is important 
to realize that because the abundance measurements are simple 
averages of characteristic gene expression, they convey no 
information about the absolute number of cells in a sample. TABLE 
3 summarizes the kinds of conclusions these estimates can support.

The remaining cell type tabs, “Summary” and “Covariates”, allow 
you to analyze both “Raw” and “Relative” cell type abundance 
estimates. Raw cell type measurements are simple averages of the 
characteristic genes’ log2 expression, and relative measurements 
are calculated as differences between raw measurements, or 
equivalently as log ratios of two cell types’ abundance. Although 

FIGURE 26: QC for B-cells. Note how BLK has 
been discarded due to the lack of correlation with 
the other genes. After dropping BLK, the other 
genes have a p-value of 0.01, giving us confidence 
that the remaining three genes measure B-cell 
abundance.

Comparison/question Allowed

Calculate the number of cells in sample A
NO – Cell Profile is average of 
expression levels, and the number of 
transcripts per cell is unknown. 

Compare a cell type’s abundance between 
samples A & B

YES – If a cell type abundance 
measurement is increased by 1 
between two samples, then there is a 
two-fold increase in the number of the 
cells present (abundance 
measurements are in the log2 space).

Compare the profiles of two cell types in 
sample A

NO – Cell Profile is average of 
expression levels for the selected 
genes, so a di�erence in values within 
a sample does not necessarily 
represent a di�erence in cell numbers. 

Compare the ratio between two cell types 
in sample A & B

YES – We can claim, for example, that 
the number of T-cells relative to NK 
cells in sample A is twice that in 
sample B.

Compare profile for a cell type between two 
samples when one sample is from a 
di�erent dataset

YES – The underlying assumption is 
that these are cell type-specific 
reference genes



FIGURE 27: Heatmaps of cell type abundance measurements and their 
correlation matrix. Orange represents higher than average abundance, blue 
lower than average. In the correlation matrix heatmap, red represents high 
correlation, blue negative correlation.

FIGURE 28: Heatmap of ratios of cell type profiles for pairs of cell types and 
correlation profiles for pairs of different cell types. Orange represents higher than 
average values, blue lower than average. Correlation matrix red represents high 
correlation, blue high anti-correlation.
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less simple to interpret, relative measurements are useful for two 
reasons. First, most immune cell types have highly-correlated 
abundance induced by tumors’ variable amounts of total 
immune infiltrate. Relative profiles better reveal differences in the 
composition of that infiltrate. Second, in PBMCs and other samples 
where tumor cells do not provide the majority of RNA, relative 
measurements can be much cleaner and easier to interpret than raw 
measurements.

The Summary tab contains descriptive plots of the cell types’ 
behavior. Its highest level shows heatmaps of the cell type 
measurements and of their correlation matrix. FIGURE 27 shows 
the majority of cell types to exhibit similar expression patterns, 
presumably rising and falling with the tumors’ total immune 
infiltrate, and sets of high- and low-infiltrate tumors are apparent.

The second heatmap shown in FIGURE 27 is the correlation 
between different cell types; red shows highly correlated cell types 
and blue shows highly anti-correlated cell types. A few cell types 
with discrepant behavior stand out: normal mucosa and mast 
cells track each other and rise when other immune cells fall. The 
anti-correlation of CD4 activated cells and T helper cells with the 
remaining cell types is intriguing, but poor QC plots for these cell 
types demand cautious interpretation.

We can also look at the relative abundance of the cell types 
(FIGURE 28). Each relative abundance measurement gives the 
log2 ratio between two cell types’ measurements. For example, the 
“CD8 vs. Treg” measurement will increase by 1 when CD8 T-cells 
double or when T-reg cells are halved. Looking at the heatmaps for 
relative cell types, we observe more fine-grained behavior. T-cells, 

B-cells, NK cells, and Cytotoxic cells all rise and fall together relative 
to CD45, while Macrophages, Neutrophils and Mast cells form a 
different cluster.

By clicking on a tab for a specific cell type, we can more closely 
examine its behavior relative to other cell types. FIGURE 29 shows 
one plot in which the relative plot for Mast cells vs CD45 is plotted 
versus the CD45 vs Normal Mucosa. It appears that as the number 
of mast cells relative to CD45 rises, the proportion of CD45 relative 
to normal mucosa falls. This pattern could suggest that tumors with 
extensive immune infiltrate have an immune population relatively 
depleted of Mast cells. Alternatively, as both measurements involve 
a contrast with CD45, this correlation could be induced by noise in 
CD45 and nothing else. Here, the wide range of values, 5 log2 units, 
suggests a biological rather than a technical explanation.

Under the “Covariates” tab, we can examine the relationship 
between cell populations and selected covariates. The summary 
plot shows a graphical representation of the cell type estimates 
as shown in FIGURE 30. For the sake of legibility, each cell type’s 
score has been centered to have mean 0. As abundance estimates 
are calculated on the log2 scale, an increase of 1 on the vertical axis 
corresponds to a doubling in abundance. As can be seen in FIGURE 
30, Th2 and mast cells have the most pronounced associations with 
subtype. This pattern is also seen when looking at cancer grade but 
not BMI (FIGURE 30).

Now that we have noticed an interesting association between 
subtype and Th2 cells, we can examine it in more detail by clicking 
the “Th2” link on the left-hand side. This yields a box plot (FIGURE 
31) of Th2 cell abundance estimates vs. subtype, which makes the 



FIGURE 29: Two relative cell type measurements, Mast Cells vs CD45 and 
CD45 vs Normal Mucosa, plotted against each other.

FIGURE 30: Summary plots for categorical and continuous variables 
plotted versus the centered cell type profiles.

FIGURE 31: Summary plots for Th2 cell type for categorical covariates 
Subtype and Tumor Grade and for the continuous covariate BMI.
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statistical significance of the association apparent. The same page 
shows a box plot of Th2 measurements against tumor stage and a 
scatterplot of Th2 measurements against BMI with a fit.

Cancer Testis Antigen Module
Cancer/Testis (CT) antigens are a category of tumor antigens with 
normal expression restricted to male germ cells in the testis but 
not in adult somatic tissues. In some cases, CT antigens are also 
expressed in ovary and in trophoblast cells. In malignancy, this 
gene regulation is disrupted, resulting in CT antigen expression in a 
proportion of tumors of various types. (Scanlan Immunol Rev. 2002 
Oct;188:22- 32.) This module plots the log2 counts of each antigen, 
with higher counts represented with deeper blue (FIGURE 32). The 
dendograms are generated in an unsupervised manner.

Single Gene Descriptive Module
This module provides detailed descriptive analysis of the (1 – 
15) genes selected by the user. The analysis will always include 
univariate plots and correlation plots. When at least 5 genes are 
selected, PCA biplots and parallel coordinate plots will also be 
generated. Additionally, when trending parameters (i.e., ‘Series ID’ 
and ‘Interval ID’ are defined, the analysis provides a very flexible 
tool for generating trend plots under a variety of experimental 
designs.

Univariate plots
For categorical variables, a box plot is overlaid with a violin plot 
providing information on both the expression quartiles as well as the 
estimated expression distributions for each level of the categorical 
variable(s) of interest. FIGURE 33 shows expression of CD8A by 
subtype. The normal samples’ lower CD8A levels are evident. 
However, care in interpretation should be taken due to the small 
number of normal samples in this experiment. The horizontal black 
lines within each box show the median expressions, while each 
box shows the 2nd quartile of expressions for its corresponding 
level. The green dots display each sample’s expression for the 
specific gene displayed. The grey shading represents the estimated 
distribution of the expression values. Again, care should be taken 
when interpreting the violin plots if only a small number of samples 
are in a category, as density estimations might not be reliable.

For a continuous covariate, a scatter plot is generated, showing 
each sample’s normalized log2 expression level plotted relative to 
the continuous variable. A least squares fit is drawn along with its 
95% confidence interval (CI). For this example, although a positive 
trend in association is observed, considering the uncertainty in the 
line of best fit (i.e., the width of the CI), the data does not provide 
strong evidence of association between BMI and expression levels



FIGURE 32: Expression levels of CT Antigens, unsupervised clustering 
used for both cell types and samples.

FIGURE 33: Univariate plot for CD8A vs Subtype (a categorical covariate), 
showing superimposition of box plot and violin plot as well as plotting 
each individual expression value.

FIGURE 34: Univariate plot for CD4 vs BMI (categorical variable) showing 
regression and 95% confidence limits
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.Correlation Plots
The correlation plots visualize three sets of information (FIGURE 
35A)

1. A plot of the pairwise co-expression of the two genes 
colored by the categories of the chosen categorical covariate. 
When the variable of interest is continuous, the values are 
categorized into low, average, and high. In the highlighted 
plot of PDCD1LG2 vs. CD274, there is some visual evidence for 
correlation, but no obvious clustering of subtypes.

2. The Pearson correlation is shown for all the data (overall 
correlation) and also for each of the subtypes defined by the 
categorical variable. In the highlighted example of PDCD1LG2 
vs. CD274, the overall correlation is 0.76, but Subtypes B, C 
and D show higher correlation (0.85 – 0.87). This is interesting, 
as these two genes are paralogs; both interact with PDCD1 
(see KEGG Pathway: hsa04514 (Cell adhesion Molecules)). The 
correlation with Normal is very low (0.3). However, the very 
low number of normal samples reduces the precision of this 
statistic.

3. Finally, for each gene, the distribution curve of expression 
values is drawn (note this effectively replicates the violin plot 
from the univariate analysis). In the highlighted example, 
PDCD1LG2, it can be seen that the normal samples appear 
to have a bimodal distribution. If you go back to univariate 
analysis and review the PDCD1LG2 gene, it can be seen that 
the bimodal distribution is caused by two outliers and is almost 
certainly an effect of small sample size rather than real biology 
(FIGURE 35B).

Biplots
Each biplot shows the spread of the observed gene expression data 
along a pair of PC axes. Additionally, the original axes of the data 
(i.e., the user-selected genes) are superimposed on each plot to 
facilitate biological interpretation of the directions of the PC axes. 
Furthermore, the data-points are color-coded by covariates to 
visualize the association of change in the overall expression (across 
all the selected genes) relative to the levels of each covariate.

In the example shown in FIGURE 36, PC1 explains 65% of the 
overall variance of the selected genes, while PC2 explains 14.6%. By 
selecting from the menu on the left, you can also compare PC1 to 
PC3 (pc13) and PC2 to PC3 (pc23). Samples that are proximal in PC 
planes have similar expression profiles of the selected genes.

The direction and the length of the vectors representing the original 
axes (i.e., the genes) visualize the degree to which each PC axis 
captures the biology represented by each gene. Specifically, for 



FIGURE 35A: Covariate plot for the 6 genes selected in analysis set-up, 
color coded by subtype. (1) Plots the expression levels of CD274 vs. 
PDCD1LG2. (2) Gives the overall correlation and correlation for different 
subtypes. (3) Shows distribution curves for expression values of 
PDCD1LG2.

FIGURE 35B: Univariate analysis of Normal samples in PDCD1LG2.

FIGURE 36: Biplots for Subtype - Left plot shows PC1 vs PC2, right plot 
shows PC2 vs PC3 (see text for description of biplot).
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a given gene, the closer the direction of the gene’s vector to a PC 
axis and the longer the vector, the larger the degree to which the 
PC axis captures the biology represented by that gene. Conversely, 
a small vector shows that the biology of the corresponding gene is 
not captured by either of the two PCs in the biplot. Thus, vectors 
pointing the same direction indicate co-expressed genes (when 
the PCs of the biplot capture a large proportion of variability in the 
data). In the example shown, the vectors are not very divergent. 
CD4 is the most divergent of these genes, suggesting that within 
the PC12 plane it does not show a great degree of co-expression 
relative to the other genes and might contain complementary 
information. Comparing this to the correlation plot in FIGURE 36, it 
can be seen that CD4 has the lowest correlations with all the genes. 
The PC23 biplot in FIGURE 36 shows more diversity in the vectors, 
suggesting that PC23 plane captures some of the dissimilarities 
between these genes.

For each category of the variable of interest, a region of the biplot 
is marked by an ellipse. Each circle represents the estimated region 
where the majority of the samples (68%) of that category type 
are expected if we were to sample the population (assuming the 
analyzed samples represent the population well). When ellipses are 
non-overlapping, the different categories of the variable of interest 
are expected to have distinctly different PC scores. This would 
indicate that differences among the categories are captured by the 
biplot. In this data set, the circles are overlapping and if differences 
exist in how the selected genes are expressed among subtypes, 
these difference are not patently clear in the biplot.

Parallel coordinate plots
These plots provide a simple way to see up/down regulation of each 
gene relative to the covariate of interest. The expression is scaled for 
each gene across all samples. For each category – for example, in 
FIGURE 37 Normal, A, B, C, and D – all individual samples are traced 
(light gray) across the genes of interest along with the average 
trend for that category.

This view quickly lets you compare the patterns of gene expression 
among the different categories of the covariate of interest. When a 
continuous variable is selected, its values are split into average, high 
and low.

Trend Plot
This plot is designed to enable tracing of the change in expression 
levels of an entity relative to a variable of interest. The entity could 
be individual patients, a cell line, a patient cohort, etc. Typically, 
the variable of interest is time, concentration, dosage, or order of 
observation. For example, FIGURE 38 shows gene expression trends 
for individual patients collected repeatedly over time for up to 21 
times. Each gray line traces the change in the gene expression of an 



FIGURE 38: Trend plot for the 6 genes selected in analysis set up color 
coded by subtype vs. BMI (continuous covariate). Note: This is an analysis 
on a different annotation set to show the power of the trend plot.

FIGURE 37: Parallel plot for the 6 genes selected in analysis set up, plotted 
versus subtype.
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individual patient over repeated measurements. The black points 
correspond to average trend across all patients and the green line is 
a smooth line (spline) fitted to these average points, highlighting the 
overall trend across all patients. The gray corresponds to the 95% CI 
for this smooth line. By default, each trend is normalized relative to 
the patient’s 1st observation as noted in labeling the vertical axis.

Conclusion
The analysis report is intentionally non-linear. Users may explore 
their results in whatever order they choose. Though many will want 
to first examine exploratory analyses for interesting findings, others 
will want to start with the data QC to confirm the results are not 
spurious.

Analysis techniques described in this tech note will be useful for 
understanding your data and for planning follow-on experiments. 
They will point to the most interesting genes, gene sets, and 
cell type profiles, and they will detail the relationship between 
biological variables and the behavior of selected genes or cell type 
profiles. Many of the analyses were built to return results suitable 
for publication. The DE analysis module uses standard methods 
that should be familiar to reviewers. The cell type profiles as used 
by nSolver are not a standard method, but they are simple and 
sufficiently statistically principled that they could be included in a 
publication with a short methodological description. Care should 
be taken when interpreting cell type profiles, especially those with 
unpromising QC plots.

For assistance when installing and running nSolver advanced 
analyses, please contact Technical Support (support@nanostring.
com). For questions on data analysis options and interpretation, 

consult an expert at your institution.

The opportunity for error with any statistical method tends to 
increase with its power and complexity, and the analyses provided 
by the PanCancer Immune Profiling Advanced Analysis Modules all 
have potential for misuse. A list of potential pitfalls follows:

Study design: Failing to balance or randomize the biological 
variables over the technical variables (e.g., running all the tumor 
samples on one cartridge with one hybridization time and running 
all the normal samples on another cartridge with a different 
hybridization time).

Normalization: Including housekeeping genes that vary with a 
covariate of interest.

Normalization: Performing the advanced analysis on raw data 
without selecting the geNorm option.

Low signal genes: Filtering out too many genes, or filtering too few 
and having the signal dominated by RNA input.

Confounding variables: Failing to annotate important covariates or 
failing to adjust for them in DE analyses.

Differential expression: Including more covariates in the DE model 
than the study’s sample size can support.

Differential expression: Including covariates with redundant 
information.
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Appendix A: File Formats for Sample or Gene Annotation
To add annotations to samples or genes, use a *.csv file that has 
at least one column to match sample IDs to the data in nSolver. 
For sample annotation, pick file name or sample name. For gene 
annotation, the gene name is required (The gene names can be 
exported from nSolver, will be available to customers with the 
sample data, and are in the human (or mouse) gene lists available 
for download from http://www. nanostring.com/products/
pancancer_ immune). Gene names with unconventional characters 
(#,@,<,/,etc…) may behave unpredictably.

Sample annotations are used to label samples with new covariates 
(see the “Annotations for data.csv” file that was packaged with the 
*.rcc files for examples of adding covariates.)

Cell Type               Description                                       Genes                        
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B-cells

T cells

Helper T cells

Th1 cells

Th2 cells

CD4
activated

Treg

Cytotoxic cells

Cytotoxic cells
(CD8 Tcells)

CD45

Perform several roles, including
generating and presenting
antibodies, cytokine production, and
lymphoid tissue organization.

Play a central role in immunity and
distinguished from other lymphocytes
(e.g., B-cells) by the presence of a 
T cell receptor (TCR) on the cell
surface.

A subset of CD3+CD4+ eector T cells
that secrete cytokines with dierent 
activities.

Produce IL-2 and IFNy and promote
cellular immunity by acting on CD8+
cytotoxic T cells, NK cells and
macrophages.

Produce IL-4, IL-5 and IL-13 and
promote humoral immunity by acting
on B-cells.

??

CD3+CD4+ T cells that inhibit
eector B and T cells and play a
central role in suppression of
autoimmune responses.

??

Eector T cells with cytotoxic
granules that interact with target
cells expressing cognate antigen and
promote apoptosis of target cells.

CD 45 is commonly used marker for
hematopoietic cells in Flow
Experiments.

TNFRS 17,
CD19, MS4A1, BLK

CD3G, CD96,
SH2D1A, CD6,
CD3D, LCK, CD2,
CD3E

ATF2, NUP107

CTLA4, LTA, IFNG,
CD38, CCL4

PMCH

IL26, IL17A

FOXP3, LILRA4

KLRK1, GZMH,
KLRB1, KLRD1,
GZMA

PRF1, CD8A,
GZMM, CD8B,
FLT3LG

CD45

TABLE 5A

Cell Type                    Description                                      Genes                        
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Natural Killer cells

Dendritic cells (DC)

Mast cells

Neutrophils

Provide a rapid cytotoxic respoce to
virally infected cells and tumors.
These cells also play a role in the
adaptive immune response by readily
adjusting to the immediate
environment and formulating
antigen-specific immunological
memory.

SPN, XCL2, NCR1

Cells that process antigen material
and present it on the cell surface
acting as messengers between the
innate and adaptive immune
systems.

Macrophages

G
ra

nu
lo

cy
te

s
Scavengers of dead or dying cells and
cellular debris. Macrophages have
roles in innate immunity by secreting
pro-inflammatory and 
anti-inflammatory cytokines.

Granulocytes that can influence
tumor cell proliferation and invasion
and promote organization of the
tumor microenvironment by
modulating the immune responce.

Phagocytic granulocytes that act as
first-responders and migrate towards
a site of inflammation. Typically a
hallmark of acute inflammation.

Normal mucosa

CD1E, CD1B,
CCL17, CCL22,
CD1A

CD84, CYBB,
CD163, CD68

CTSG, TPSAB1,
MS4A2

C1R, COL3A1

C1R, COL3A1

TABLE 5B: Cell types as defined in the default gene annotations were 
generated by using TCGA data to identify the most promising subsets 
of previously published lists of cell type-specific genes (Bindea 2013, 
Newman 2015). Because these gene lists are data-driven, they are more 
restrictive than other lists. Users wishing a more permissive definition can 
use the Cell.Type annotation (FIGURE 5) or can define their own cell type 
gene lists.

 Sample name N0114 N1002 N1003 N1004

 Subtype Normal Normal Normal Normal

 RNA.CONC 162.74 152.98 130.97 97.44

 Tumor.Grade Normal Normal Normal Normal

 Age.at.Excision 46 58 59 57

 Ethnicity Caucasian Caucasian
Asian.Pacific       
Islander

Caucasian

 BMI 23.1206 23.3091 23.2334562 20.2848

TABLE 6A: The default format organizes files in columns. For this format, 
leave the Transpose Data box selected.

Sample 
name Subtype RNA.CONC Tumor.Grade Age.at. 

Excision Ethnicity BMI

 N0114 Normal 162.74 Normal 46 Caucasian 23.1206
 N1002 Normal 152.98 Normal 58 Caucasian 23.3091

 N1003 Normal 130.97 Normal 59 Asian.Pacific 
Islander

23.2335

TABLE 6B: Alternatively, data can be arranged in rows; in this case, 
deselect the Transpose Data box.
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Gene annotation is used to do two things:
1. Create new gene sets. Create a single column with all of the 

gene set information. If a gene belongs to multiple gene sets, 
separate each set with a semicolon “;”. Genes that are not in a 
gene set should be labelled NA (TABLE 7A)

2. Create new cell type-specific gene lists. To do this, create 
a column in the format of the Cell.Type.TCGA column in the 
default gene annotation file with each cell type’s name written 
in the cells corresponding to its characteristic genes. Each gene 
can only be assigned to one cell type, and genes not associated 
with cell types should be given a value of NA (TABLE 7B).

If a new cell type list is defined, then a new “cell type contrasts 
matrix.csv” will also need to be defined (TABLE 7C). The row 
names of this matrix correspond to cell types and must match the 
cell types in the chosen cell type column in the gene annotation 
file. Each column names a relative cell type variable to be created. 
For each column, a relative cell type variable will be calculated as a 
linear combination of the cell type measurements specified in the 
rows. In the following example, cell types contrast matrix, “T-cells vs 
CD45” will be calculated as the B-cell measurement minus the CD45 
measurement. (This is equivalent to their log2 ratio.) The default 
contrasts matrix uses simple pairs of “1” and “-1” values, but other 
linear combinations are possible. For example, the fourth column 
below demonstrates how to calculate the average of B-cells, CD8 
cells and T-helper cells.

Gene.Name Immune.Response.category

C4BPA

C7

CASP10

PBK

CCL25

CD1D

TFRC

FPR2

CD24

TNFRSF14

DDX43

IL13RA2

IL7R

IL1A

IL5

CTSG

MS4A2

TPSAB1

A2M

ABCB1

ABCF1

Complement

Complement

NA

NA

Chemokines; Complement

T-Cell Functions

NA

NA

NA

Regulation; T-Cell Functions;
TNF Superfamily

NA

Chemokines; T-Cell Functions

Cytokines

Cytokines; Interleukins

Cytokines; Interleukins; Regulation;
T-Cell Functions

Mast cells

Mast cells

Mast cells

NA

NA

NA

TABLE 7A

CD163

CD68

CD84

CYBB

Macrophages

Macrophages

Macrophages

Macrophages

TABLE 7B

B-cells

CD8 T-cells

T-cells

T helper cells

Treg

CD45

1

0

0

0

0

-1

B-cell
vs CD45

T-cell
vs CD45

CD8
vs T-cells

B and T
average

T-helper
vs T-cells

0

0

1

0

0

-1

0

1

-1

0

0

0

0.33

0.33

0

0.33

0

0

0

0

-1

1

0

0

TABLE 7C
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Appendix B:  
Automatic screening of failed cell type specific genes
Here we detail the algorithm used to identify badly-behaving cell 
type-specific genes and exclude them from estimates of cell type 
abundance. 

Define a similarity metric between two candidate cell type-specific 
genes. Under the assumption that both genes are specific to 
the same cell type and consistently expressed within it, they will 
be highly correlated with a slope of 1. To measure two gene’s 
adherence to this pattern, we employ a slightly modified version of 
Pearson’s correlation metric:

where x and y are the vectors of log-transformed normalized 
expression values of the two genes, and are their sample means, 
and var(x) and var(y) are their sample variances. The similarity() 
function equals 1 when the two genes are perfectly correlated with 
slope of 1 and decreases for gene pairs with low correlation or slope 
diverging from 1. Since many biologically-related genes will exhibit 
correlation unrelated to a shared cell type, it is important to apply a 
more stringent measure of similarity than mere correlation.

Our gene selection algorithm is as follows. Assume there are p 
genes and n samples. 

1. Use the similarity() function to compute a p*p similarity matrix 
among the genes. Each gene has similarity of 1 with itself. 

2. Label all gene pairs with similarity below 0.2 as “discordant.” 

3. Iteratively remove genes: while there are more than 2 genes 
remaining and while at least one discordant pair of genes 
remains: 

a. Count the number of discordant pairs each gene 
participates in. Call the maximum of these counts n_
discord. 

b. dentify the genes with n_discord instances of 
discordance with another gene. Of these genes, remove 
the single gene with the lowest average similarity to the 
other remaining genes

Appendix C: Calculation of p-values
for cell type gene sets
.We assess a set of gene’s adherence to the assumption of cell 
type-specific and consistent expression using a permutation test. 
Specifically, we test the null hypothesis that the given gene set 
exhibits no greater cell type-specific-like behavior than a randomly 
selected gene set of similar size.

First, we require a metric of a gene set’s adherence to the 
assumption of cell type-specific and consistent expression.

where X is the matrix of log-transformed, normalized expression 
values of the gene set, and where p is the number of genes. The 
concordance() function evaluates at 1 if all genes are perfectly 
correlated with a slope of 1, and degrades to 0 as this pattern 
weakens.

We perform our permutation test as follows. Assume the given 
gene set has p genes, of which p0 survived the iterative gene 
selection procedure. Call the data from the gene set X, and the data 
from the reduced gene set X0.

1. Compute concordance(X0). 

2. Choose 1000 random genes sets of size p. Denote the data 
from a random gene set X’.

3. For each gene set, apply the criteria of the gene selection 
algorithm to reduce X’ to only its best p0 genes. Call the 
data from this reduced random gene set X0’, and compute 
concordance(X0’).

4. Return a p-value equal to the proportion of concordance(X0’)
values v greater than concordance(X0).
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